Accuracy vs. Interpretability of Fuzzy Rule-Based Classifiers: An Evolutionary Approach
نویسندگان
چکیده
The paper presents a generalization of the Pittsburgh approach to learn fuzzy classification rules from data. The proposed approach allows us to obtain a fuzzy rule-based system with a predefined level of compromise between its accuracy and interpretability (transparency). The application of the proposed technique to design the fuzzy rule-based classifier for the well known benchmark data sets (Dermatology and Wine) available from the http://archive.ics.uci.edu/ml is presented. A comparative analysis with several alternative (fuzzy) rulebased classification techniques has also been carried out.
منابع مشابه
A Survey on the Design of Fuzzy Classifiers Using Multi-Objective Evolutionary Algorithms
Fuzzy systems have been used in many fields like data mining, regression, patter recognition, classification and control due to their property of handling uncertainty and explaining the property of complex system without involving a specific mathematical model. Fuzzy rule based systems (FRBS) or fuzzy rule based classifiers (particularly designed for classification purpose) are basically the fu...
متن کاملAnalysis of interpretability-accuracy tradeoff of fuzzy systems by multiobjective fuzzy genetics-based machine learning
This paper examines the interpretability-accuracy tradeoff in fuzzy rule-based classifiers using a multiobjective fuzzy genetics-based machine learning (GBML) algorithm. Our GBML algorithm is a hybrid version of Michigan and Pittsburgh approaches, which is implemented in the framework of evolutionary multiobjective optimization (EMO). Each fuzzy rule is represented by its antecedent fuzzy sets ...
متن کاملHandling High Dimensionality and Interpretability-Accuracy Trade-Off Issues in Evolutionary Multiobjective Fuzzy Classifiers
Fuzzy systems are capable to model the inherent uncertainties in real world problems and implement human decision making. In this paper two issues related to fuzzy systems development are addressed and solutions are proposed and implemented. First issue is related to the high dimensional data sets. Such kinds of data sets lead to explode the search space of generated rules and results into dete...
متن کاملA fuzzy system index to preserve interpretability in deep tuning of fuzzy rule based classifiers
Following the successful applications of the fuzzy models in various application domains, the issue of automatic generation of Fuzzy Rule Based Systems (FRBSs) from observational data was widely studied in the literature and several approaches have been proposed. Most approaches were designed to search for the best accuracy of the generated model, neglecting the interpretability of FRBSs, which...
متن کاملA Logic-Based Approach for Evaluating Interpretability of Fuzzy Rule-Based Classifiers
We describe an automatic approach for evaluating interpretability of fuzzy rule-based classifiers. The approach is based on the logical view of fuzzy rules, which are interpreted as rows in truth tables. These truth tables are subject of a minimization procedure based on a variant of the Quine-McCluskey algorithm. The minimized truth tables are used to build new fuzzy rules, which are compared ...
متن کامل